C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Group Theory Subject Code: 5SC04GPE1

Branch: M.Sc.(Mathematics)

Semester: 4	Date: 24/04/2017	Time: 10:30 to 01:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1			Attempt the Following questions	(07)
		a.	Define: Group.	(01)
		b.	Define: Sub group.	(01)
		c.	Define: Cyclic group.	(01)
		d.	Define: Normalizer of element of group.	(01)
		e.	Define: Left coset.	(01)
		f.	Define: Normal sub group.	(01)
		g.	Define: Permutation.	(01)
Q-2			Attempt all questions	(14)
	a)		Define Centre of group G. Prove that Centre of group G is subgroup of G.	(05)
	b)		If $G = a_0, a_1, \dots, a_6$	(05)
			where $\begin{cases} a_i \ a_j = a_{i+j} & \text{if } i+j < 7 \\ = a_{i+j-7} & \text{if } i+j \ge 7 \end{cases}$ then prove that <i>G</i> is a group under multiplication.	
	c)		Prove that any two right cosets of a subgroup are either disjoint or identical. OR	(04)
Q-2			Attempt all questions	(14)
-	a)		Let G be a group. Prove that G is abelian group in each of the following case	(06)
			(i) $a^2 = e$, $\forall a \in G$ (ii) $(ab)^2 = a^2 b^2 \forall a, b \in G$	
			(iii) $(ab)^i = a^i b^i$ for three consecutive integer <i>i</i> .	
	b)		If $a \in G$ is of order <i>n</i> then prove that $a^m = e$ for some integer m if and only if $n \mid m$.	(05)
	c)		Prove that every cyclic group is abelian group.	(03)
Q-3	•,		Attempt all questions	(14)
× •	a)		If H and K are finite subgroups of G of orders $O(H)$ and $O(K)$ then prove that	(05)

			$O(HK) = \frac{O(H) O(K)}{O(H \cap K)}.$		
	b)		State and prove Lagrange's theorem.	(05)	
	c)		In a finite group G, prove that $o(a) \mid o(G)$ for each $a \in G$.	(03)	
	•)		OR	(01)	
Q-3	a)		If K is a sub group of G and H is a normal subgroup of G then prove that	(06)	
			(i) $K \cap H$ is a normal subgroup of K .		
	L)		(ii) KH is a sub group of G .	(05)	
	b)		If a cyclic subgroup T of G is normal in G then prove that every subgroup of T is normal in G .	(05)	
	c)		Let <i>H</i> and K be subgroups of a finite group <i>G</i> and $o(H) > \sqrt{o(G)}$,	(03)	
	- /		$o(K) > \sqrt{o(G)}$ then prove that $H \cap K \neq \{e\}$.		
			$\mathbf{SECTION} - \mathbf{II}$		
Q-4			Attempt the Following questions	(07)	
۲-A		a.	Define: Homomorphism	(01)	
		b.	Define: Automorphism.	(01)	
		c.	Define: External direct product	(01)	
		d.	Define: Simple group.	(01)	
		e.	Define: Solvable group.	(01)	
		f.	Define: Invariant of group	(01)	
		g.	Define: p - sylow group.	(01)	
Q-5			Attempt all questions	(14)	
×۰	a)		Prove that each permutation $f \in S_n$ can be expressed as a composition of disjoint	(06)	
			cycles.		
	b)		Let G be a group and suppose G is the internal direct product of $N_1, N_2,, N_n$. Let $T = N_1 \times N_2 \times \times N_n$. Then prove that G and T are isomorphic.	(05)	
	c)		For $n \ge 2$, prove that the set A_n of even permutation in S_n is a sub group of	(03)	
			order $\frac{n!}{2}$		
	OR				
Q-5	a)		State and prove fundamental theorem of homomorphism.	(06)	
	b)		If G is finite group then prove that $o(G) = \sum_{i=1}^{k} \frac{o(G)}{o[N(a)]}$	(05)	
	c)		If N is normal subgroup of group G and $a \in G$ is of order n then prove that the	(03)	
	0)		order m of Na in G/N is divisor of n .	(00)	
Q-6	``		Attempt all questions	(14)	
	a)		If G is a group then prove that $\mathcal{A}(G)$, the set of all automorphism of G is also a	(06)	
	b)		group under the composition of functions Prove that $I(G) \cong G/Z$ where $I(G)$ is the group of inner automorphism and Z is	(05)	
	b)		the centre of G .	(05)	
	c)		Let T be an automorphism on group G. If $T(H) = \{T(h): h \in H\}$ then prove that	(03)	
	/		T(H) is a subgroup of G .		
	OR				
Q-6	a)		State and prove Sylow's theorem	(07)	
	b)		State and prove Cayley's theorem.	(07)	

